Key Points Concerning Amyloid Infectivity and Prion-Like Neuronal Invasion
نویسندگان
چکیده
منابع مشابه
Key Points Concerning Amyloid Infectivity and Prion-Like Neuronal Invasion
Amyloid aggregation has been related to an increasing number of human illnesses, from Alzheimer's and Parkinson's diseases (AD/PD) to Creutzfeldt-Jakob disease. Commonly, only prions have been considered as infectious agents with a high capacity of propagation. However, recent publications have shown that many amyloid proteins, including amyloid β-peptide, α-synuclein (α-syn) and tau protein, a...
متن کاملPrion-like disorders: blurring the divide between transmissibility and infectivity.
Prions are proteins that access self-templating amyloid forms, which confer phenotypic changes that can spread from individual to individual within or between species. These infectious phenotypes can be beneficial, as with yeast prions, or deleterious, as with mammalian prions that transmit spongiform encephalopathies. However, the ability to form self-templating amyloid is not unique to prion ...
متن کاملTetracyclines affect prion infectivity.
Prion diseases are transmissible neurodegenerative disorders of humans and animals for which no effective treatment is available. Conformationally altered, protease-resistant forms of the prion protein (PrP) termed PrP(Sc) are critical for disease transmissibility and pathogenesis, thus representing a primary target for therapeutic strategies. Based on previous findings that tetracyclines rever...
متن کاملMutant p53 Aggregates into Prion-like Amyloid Oligomers and Fibrils
Over 50% of all human cancers lose p53 function. To evaluate the role of aggregation in cancer, we asked whether wild-type (WT) p53 and the hot-spot mutant R248Q could aggregate as amyloids under physiological conditions and whether the mutant could seed aggregation of the wild-type form. The central domains (p53C) of both constructs aggregated into a mixture of oligomers and fibrils. R248Q had...
متن کاملPrion-like seeding and nucleation of intracellular amyloid-β
Alzheimer's disease (AD) brain tissue can act as a seed to accelerate aggregation of amyloid-β (Aβ) into plaques in AD transgenic mice. Aβ seeds have been hypothesized to accelerate plaque formation in a prion-like manner of templated seeding and intercellular propagation. However, the structure(s) and location(s) of the Aβ seeds remain unknown. Moreover, in contrast to tau and α-synuclein, an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Molecular Neuroscience
سال: 2016
ISSN: 1662-5099
DOI: 10.3389/fnmol.2016.00029